Activation by GDNF of a transcriptional program repressing neurite growth in dorsal root ganglia.
نویسندگان
چکیده
Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of postnatal-but not embryonic-mouse dorsal root ganglion cells in vitro, despite the fact that its receptors are expressed at both ages. To understand this difference, we have performed an oligonucleotide microarray experiment. We found that several hundred genes were regulated between embryonic and postnatal stages, and that several important classes of genes were differentially regulated by GDNF treatment, including genes related to translation and to phenotypic specification and maturation. Interestingly, a set of genes related to cell adhesion, cytoskeleton and cellular morphology were consistently down-regulated by GDNF, suggesting a previously uncharacterized role for GDNF in repressing neurite growth and/or branching. This nuclear program initiated by GDNF was functionally confirmed in cultures of embryonic wild-type neurons sustained with nerve growth factor and in bax(-/-) neurons that survive in the absence of trophic support.
منابع مشابه
Collagen as Adherent Substratum and Inducer of Dorsal Root Ganglia Outgrowth
Neurite outgrowth from dorsal root ganglion (DRG) explants is a method of evaluating neurotrophic activity of growth factors. When complete medium containing collagen was supplemented with nerve growth factor (NGF) DRG outgrowth was observed after 18 h. In the absence of NGF and in the presence of collagen, the DRG outgrowth took place after 72 h. In wells not supplemented with collagen gel in ...
متن کاملDevelopmental changes in neurite outgrowth responses of dorsal root and sympathetic ganglia to GDNF, neurturin, and artemin.
The ability of glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin to induce neurite outgrowth from dorsal root, superior cervical, and lumbar sympathetic ganglia from mice at a variety of development stages between embryonic day (E) 11.5 and postnatal day (P) 7 was examined by explanting ganglia onto collagen gels and growing them in the presence of agarose beads impregn...
متن کاملImpaired axonal regeneration by isolectin B4-binding dorsal root ganglion neurons in vitro.
The subpopulation of dorsal root ganglion (DRG) neurons recognized by Griffonia simplicifolia isolectin B4 (IB4) differ from other neurons by expressing receptors for glial cell line-derived neurotrophic factor (GDNF) rather than neurotrophins. Additionally, IB4-labeled neurons do not express the laminin receptor, alpha7-integrin (Gardiner et al., 2005), necessary for optimal axonal regeneratio...
متن کاملThe Neurite Outgrowth Measurement of Dorsal Root Ganglia Explants Cultured on Estrogen and Schwann Cell-Conditioned Medium by Using Image Analysis
S everal ways of promoting nerve regeneration have been discovered including the use of biochemical substances such as growth factors, hormones and physical factors such as electric currents, and magnetic fields. As first reported by Levi-Montalcini, NGF was identified by promoting growth of neurites from primary cultures of chick explants by using visually scored neurite growth. Recently, the ...
متن کاملGlial cell line-derived neurotrophic factor contributes to delayed inflammatory hyperalgesia in adjuvant rat pain model.
Neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, are members of the structurally related neurotrophin family that play important roles in pain modulation. Although there are also indications for the involvement of glial cell line-derived neurotrophic factor (GDNF), it is unclear whether and how GDNF is involved in inflammatory pain. In the present study, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 25 شماره
صفحات -
تاریخ انتشار 2001